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1. Consider a plate which is oriented with an orthogonal coordinate 
system a, @, y such that the middle plane of symmetry of the plate co- 
incides with the a, p-plane. We make the following assumptions [ 1.2 1 i 

a) the normals of the plate assembly considered as a whole do not de- 
form; 

b) the material in each layer of the plate is incompressible; 

c) the directions of the stress and strain tensors coincide in each 
layer of the plate; 

d) there exists between 
the following relation: 

Here i is the number of 

the magnitudes of the stress and strain tensors 

Ti = aiEi - biEimi (1.1) 

are certain constants, the layer, ai, bi, pi _ _ 
and bi can be either positive L 2,s 1 or negative [ 4 1‘ 

Fig. 1. Fig. 2. 

Under the above assumptions the equations for the normal displacements 
v have the fona [ 1 1 e 

1102 
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D,A%. - Dp& - 2 aa 

= Z (a7 p, 1) -m* irln (1.2) 

Here 
2 

8 I), = - (azl1i9 + a, (h13 - ha3)1, 
9 

Pp = 2 DiPx(“‘i-‘)‘* 
i=l 

~~ = 2m1+?3- (mt+l)/* 
ml+2 ’ 

D2 = 2%+?3-(7%+1)/:! h-m,+e 
ntz + 2 

where g is the acceleration of gravity and yi is the specific gravity of 
the material in the ith layer of the plate. 

2. Let uniformly distributed compressive forces P, and P, (Fig. 2), 
varying with time, act in the a, P-plane of the plate. Then, as is well 
known [ 3 1 ) we have 

ab a+ 
Az=-Pl~-Ps,pz (2.1, 

Substituting (2.1) into (1.2), we obtain the equation for the dynamic 
stability of a nonlinearly-elastic, three-layered plate 

ao, /&/J azw 
De~Zw-DDpAaw-2~(~+-- 

dci d/Y 

(2.2) 

The solution of (2.2) has the form 

w = f (1) 1 (4 Y (PI (2.3) 

where f(t) is an unknown function of time and X(a), Y(p) are functions 
which depend on a single argument and which are chosen beforehand so as 
to satisfy the boundary conditions that are prescribed on the edges of 
the rectangular contour in terms of ZV. For X(a) and Y(p) one may take 
the fundamental functions for a beam. 
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Substituting (2.3) into (2.2) and using the Bubnov-Galerkin method 
to determine f, we obtain the nonlinear differential equation 

where 

(2.4) 

J3 
&=D - 

ji 

c m*Jo ’ P,, = De $ ( P:, = De 2, ai = D. __ 1 m*J,, 

.J,, -z [ i 

nb 

X2Y2 da d/3, J8 = (X’VY + 2X”Y I8 -I- xY’v) XY dr tli?l 
IYO 

s;s 
00 

ab nb 

J1=- 
ss 

X”XY2 da dp, J:! =- 
si 

X2Y”Y da dp 

00 0; 
ab 

j = ' K(mi-lV2 

11 

In.---1 

(X’VY +2x”Y” + XYLV) + +-r/i 
(r5-3)/? 

X 
OiJ 

C 

FK 
i( 2g(x’“Y+x’Y”) +zg(xY”’ + x”Y’)+ dcc” X”l’ 

x [($)yXNY +;xr. ) + (%)’ (XYrf + iX”Y) + g $ X/Y,]] XY da d!I! 

K = (X“Yjz + (XYn)p + (X’Y’)? + X”Y Xl’” (2.5) 

Here o is the linear value of the natural frequency of oscillation; 

P1* 
and P,, are the critical values of the loads P, and P, when they are 

acting statically and independently. 

In the particular case of aI = a2 = 3 we have 

f” ++&g*)f-ap= 0 

where 

ab 

a=&iDi K 
0 SH 

i=l 00 

(x'vy + 2X"Y" ,- xyq + 2 g (p’y I *X'Yfy -I- 

f3K d2K 
+2ap (XY” + X”Y’) + -&y ( X”Y .;xYm)+ 

+ g (XY~ + 3 xn Y) + G X’Yr] XY da d/3 

(2.6) 

(2.7) 

An equation analogous to (2.6) was obtained by Bolotin [ 3 ] for the 
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homogeneous nonlinearly-elastic beam. 

In the case of an infinite strip which is simply supported along its 
edges (Fig. 3), we set X = sin (?r a/ a) and obtain from (2.5) 

2nt.D,)t2(mi+1) a 

ai= I1 
m*a s 

[ r,Lisin mi+lht + (nzi - I) sinmi- ’ ),%I & (2.S’ 

Cl 

3. Let 

Pi = Pi, + Pi, cos et (i = I, 2) (3.1, 

Then, taking into account linear damping, Equation (2.4) may be 
brought to the form 

j” + 2&f’ -/- Qz (1 - 2~ cos Ot) j - a, 1 j Im~-l/ - a2 I f p-lj = 0 (3.2’ 
Here E is the coefficient of linear damp- 

ing 

Fig. 3. 

p = ($ 
( 
I- PI OP?, - P2 ,:p,* 

I’I,P?, > 
1 p,,p,, + p‘?,p,* 

p = T PI*P?* - PI bP2, - PC “P,’ (FL:.;1 

It is known [ 3 1 that (3.2) can be written in a form such that its 
“linear part” allows of a periodic solution with the period T= 27r/6 
or 2T 

j” + 2E+j’ + Q,’ (i - 2p COS 81) j + v (j, j’, 1) = 0 (3.4! 

Here 

SC, = Q $ , 0 
* E*=Ee, (3.5 

v (j, j’, 1) = 2 (E - E*) j’ + (a a - 52.‘) (1 - 2p co5 fit) j  - 

- a1 1 j  ImL--lj - a2 1 j  Im2--lj 

The critical frequency 6 is determined from the assumption that the 
initial undisturbed state ig not deformed [ 3,5 I, For example, for the 
boundaries of the principal region of instability we have 
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On the boundaries of this region, i.e. when 8 = 8+, the linear part 
of Equation (3.4) permits of periodic solutions, which for p << 1 can be 
approximately represented in the following form: 

‘PI (1) =: cos ; - 6 ) ( ) 92 (1) =: sin (T - G) 

On the basis of the method of Mandel’shtam [ 3 I, the amplitude of the 
steady-state oscillations C for the boundaries of the principal region 

of instability can be determined, to the zeroth order, from the equation 

2T 

!  V [Cqi (1), C~i’ (t), tI ‘pi (t) dt = 0 (3.8! 
ti 

Therefore, we obtain the nonlinear algebraic equation 

A,P’ + .426”1 = (P - Q*2) (1 f  I* cos 26) c (3.9) 

where by virtue of (3.7) 

2T 
a.0 ’ 

.-1 +- 
iI .I 

COS~~‘~(~-.~)I~~, or ~i=~?STISinmi+i(~-~)ldl (3.10) 

0 0 

We note that in the last term of Equation (3.9) the minus sign refers 
to the lower, and the plus sign to the upper boundary of the principal 
region of instability. 

Examining Formulas (1.3), (2.5) and (3. lo), it is easy to see that 
the coefficients Ai are always positive for bi > 0 and negative for 
bi < 0. We note also that the coefficients can be zero only in those 
cases when the corresponding layer of the plate is made of a linearly- 
elastic material, 

Fig. 4. Fig. 5. 

Let Ai>/ 0. In this case, on the basis of (3.9), the plot of the 
amplitudes of steady-state oscillations in the principal region of 
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dynamic instability has the form shown in Fig. 5. Distortion of the 
oscillation in the direction of lower frequencies occurs. In the case of 

Ai < 0, the amplitude plot changes its form and the distortion of the 
oscillations occurs in the direction of higher frequencies (Fig. 4). 

When the Ai have opposite sign, for example A1 > 0, A2 < 0, the first 

term in (3.9) has a tendency to distort the oscillations in the direction 

Fig. 6. Fig. 7. 

of lower frequencies, while the second term distorts the oscillations in 
the direction of higher frequencies. As an example we examine the case 

m 1 = 2, m2 = 3. Then (3.9) has the form 

With (3.6) and (3.7) taken into account, the solution of (3.11) has 

the form 

cI=o (3.12) 

The zero solution (3.12) is stable everywhere, except in the region 
of excitation of the linear system, where the steady-state solution 
(3.13) (Fig. 6) is obtained. Here the following phenomenon develops: 
after the plate enters resonance, the frequency begins to drop to a 
certain value 8,‘, where ok2 is determined from the equation 

(3.14) 

after which the frequency begins to rise again. The distortion of the 
oscillations occurs in the direction of higher frequencies. 

In the case of ml = 3, m2 = 2, the plot of the amplitude of steady- 
state oscillations changes its form (Fig. 7) and the distortion of the 
oscillations occurs in the direction of lower frequencies. We note 
further that if ml = a2, then, depending on the moduli of the coefficients 
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Ai* the steady-state oscillations are established along the curve shown 
in Fig. 4 or Fig. 5. In this particular case, if 1 A1 1 = ( A2 1, the non- 
linearity vanishes. 

In order to complete the picture we remark that when AI < 0, A, > 0 

all of the above-indicated calculations are repeated, but the plots of 
the steady-state amplitude dependence change their form. Depending on 

ni they are represented as follows: for RI = 2, a2 = 3 (Fig. 7). for 
a 1 = 3, .w2 = 2 (Fig. 6). for aI = a2 (Fig. 5) or (Fig. 41. 
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